9π/2 = 2 voltas e 1/4 de volta
13π/2 = 3 voltas e 1/4 de volta
17π/2 = 4 voltas e 1/4 de volta
Podemos generalizar e escrever todos os arcos com essa característica na seguinte forma: π/2 + 2kπ, onde k Є Z. E de uma forma geral abrangendo todos os arcos com mais de uma volta, x + 2kπ.
Estes arcos são representados no plano cartesiano através de funções circulares como: função seno, função cosseno e função tangente.
Características da função seno
É uma função f : R → R que associa a cada número real x o seu seno, então f(x) = senx. O sinal da função f(x) = senx é positivo no 1º e 2º quadrantes, e é negativo quando x pertence ao 3º e 4º quadrantes. Observe:
Gráfico da função f(x) = senx
Características da função cosseno
É uma função f : R → R que associa a cada número real x o seu cosseno, então f(x) = cosx. O sinal da função f(x) = cosx é positivo no 1º e 4º quadrantes, e é negativo quando x pertence ao 2º e 3º quadrantes. Observe:
Gráfico da função f(x) = cosx
Características da função tangente
É uma função f : R → R que associa a cada número real x a sua tangente, então f(x) = tgx.
Sinais da função tangente:
- Crescente em cada valor.
Gráfico da função tangente
0,5 pi é a mesma coisa que pi/2 ( repare que no ponto do grafico aonde se anda de pi/2 em pi/2, a tangente tende a infinito, pois no ponto pi/2 ela não existe )
C*
Nenhum comentário:
Postar um comentário