A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.
As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau,
ax² + bx + c = 0, dependendo do valor do discriminante ∆(delta), podemos ter as seguintes situações gráficas:
∆ > 0, a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.
∆ = 0, a equação possui apenas uma raiz real. A parábola intercepta o eixo x em um único ponto.
C*
Nenhum comentário:
Postar um comentário